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D I R E C T  

W I T H  A 

E L E C T R I C  C U R R E N T  IN A M E D I U M  

L A R G E  N U M B E R  OF C R A C K S  

S .  K .  K a n a u n  U D C 5 3 9 . 3  

The solution of the problem of an electrostat ic  field and a field ofd i rec t  electr ic  current  in a medium 
containing a large number of randomly arranged cracks is the theoretical  basis for some important methods 
of nondestructive checking of damage to mater ia ls  (e.g., metals,  rocks) [1, 2]. 

In the present  study we propose an approach for finding the multipoint moments of a statistical solution 
of this problem. For  the case of a d i rect  electr ic  current  we consider a method of constructing the means 
(mathematical expectations) and correlat ion functions of the current  and voltage vector fields with an electr ic  
field in a medium with cracks.  

In recent  years  there  have been a great  many studies devoted to the description of the effective thermal ,  
electr ical ,  and magnetic propert ies  of inhomogeneous materials  (see, e.g., [3]). The problem of co~strttcting 
the effective parameters  of an inhomogeneous medium reduces ~ calculating the mean value of the random 
field of the solution. For some stochastic s tructures this problem admits of fairly good approximate, or even 
exact, solutions (exact summation of ser ies  of perturbation theory). However, in calculating the variance of 
the solution, when we construct the correlat ion functions in terms of which we can express,  e.g., the mean 
energy density of the field, visible resul ts  can be obtained only for the case of weak inhomogeneity, where we 
confine ourselves to the f i rs t  te rms of the ser ies  of perturbation theory [4]. 

In the specific case of a medium containing a field of isolated inhomngeneRies, a number of authors 
have used the effective (self-consistent)  field method, which is well known in many-part icle theory. 

It should be noted that the idea of self-consistency for describing the effective properties of an inhomo- 
genons medium can be used in various forms. In [5, 6] self-consistent solutions of an electr ical  conduction 
problem were constructed on the basis of the assumption that each typical inhomogeneity - for example, a 
polycrystal  grain ' -behaves as if it were isolated in a homogeneous medium whose properties coincide with 
the effective propert ies  of the entire medium, while the field in which such an inhomogeneity is situated was 
taken to be equal to the external  field. Such a modification of the method is sometimes called the effective- 
medium method [7]. 

In the present  study, in constructing a self-consistent  solution for a medium containing plane elliptical 
cracks,  it is assumed that each crack behaves as if it were isolated in a principal medium with known proper -  
t ies,  and the presence of the surrounding cracks is taken into account by means of the effective field in which 
it is situated. Unlike the usual formulations of the method, in which the effective field is chosen to be the same 
for all part icles [8], here  we assume that this field is random, varying from crack to crack. To construct the 
equations which will be satisfied by the statistical moments of the effective field, we make use of a procedure 
of the "smoothing" type [9], in which the chain of equations connecting all the multipoint moments of the solu- 
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t ion is b roken  by replacing the mean  of the product  of random functions with the product  of the i r  means.  

�9 " The  method can be used prac t ica l ly  without change for  investigating an e lec t r i c  field and solving analo-  
gous problems  in the theory  of e las t ic i ty  for a medium with a large number of c racks  [10]. 

1. We cons ider  a conductive body containing a set  of a r b i t r a r i l y  a r r anged  cracks .  By a c r ack  we shall 
mean  an inf ini tes imal ly  thin cut along a segment  of a smooth or iented sur face  with normal  a. The boundary 
condition on the sur face  of a c r ack  is that  the  normal  component  of the e l ec t r i c  cu r r en t  vec to r  vanishes.  Sup- 
pose that  the dimensions of the c racks  and the dis tances  between them a re  much sma l l e r  than the dimensions 
of the body and the cha rac t e r i s t i c  scale  of var ia t ion  of the ex te rna l  f i e ld  (the field in the absence of any 
cracks) .  Then,  d i s regard ing  boundary effects ,  we can immedia te ly  consider  an infinite medium with c racks  
in a constant  ex te rna l  field. Herea f t e r  we shall  a ssume for the sake of defini teness  that we fix an ex te rna l  
field of c u r r e n t  vec to r  J0. 

The solution of this problem can conveniently be sought in the form of the potential  of a double l ayer  
concent ra ted  on the sur faces  of the c racks  a i :  

(p(r)=% + ~  f (I) (R, n;) b~ (F) 5 [~i] dr', (1.1) 

where  r is the radius  vec to r  of a point of the medium; R = r '  - r ;  n' = a ( r , ) ;  5[~2i] is the del ta  function 
concent ra ted  on the su r face  ~ i  [11] ; ~a 0 is the potential  of the ex te rna l  field; �9 (R, a) is the kernel  of the po-  
tent ia l  of the double l ayer ,  which is the solution of the equation 

div [~tVqP] = n~tvS(R ), (1.2) 

where  ~ is the e l ec t r i ca l  conductivity tensor ;  V is the gradient  operat ion;  5(R)  is the IMrac del ta  function; 
t ensor  quantit ies standing one af te r  another  ro ta te  by  one index each. 

If the potential  densi t ies  b i ( r )  in (1.1) a r e  known, the voltage of the e lec t r i c  field E and the cu r r en t  
vec to r  j in the medium can be  r ep r e sen t ed  in the form 

E(r)=U0 + Z S V~p (R, n~) bl (r') 5 [~d dr', 
i (1.3) 

i 

where  E 0 -~ VtP0; the kernel  I(R, a) has  the fo rm 

I(R, n) ---- 9[V~ -- n6(R)]. (1.4) 

As is known, the potential  of the double l aye r  (1.1) has discontinuit ies in the t rans i t ion  through surface  
Ri- T h e r e f o r e  the gradient  of the field E = Vr  contains del ta  functions concentra ted  on these surfaces .  How- 
eve r ,  the physical  field of the c u r r e n t  vec tor  J ( r )  mus t  be bounded eve rywhere  except  possibly at  the edges 
of the c racks .  The Di rac  del ta  function appearing on the r ight  side of (1.4) makes  it possible to compensate  
for  this s ingular i ty  at the sur faces  of the c racks .  The vec tor  field J ( r ) ,  in the sense  of general ized functions, 
sa t i s f ies  the equation div j = 0 everywhere  in the medium, as should in fact  be the case ,  since there  a re  no 
s o u r c e s .  

The equations for the function bi(r)  follow f rom the boundary conditions at  the sur face  of the cracks :  

n~(r)~r) = 0 for r~Q i (i = 1, 2, ...). 

The  in tegral  ope ra to r s  on the r ight  s ides of the re la t ions  (1.3) belong to the c lass  of pseudedifferent ia l  
ope ra to r s  [12], whose symbols  (the Four i e r  t r a n s f o r m  of the kerne ls  V~ and I with r e s p e c t  to the var iab le  
R) a r e  homogeneous functions of z e r o - d e g r e e  homogenei ty  

VT~(k, n) = k(kn)/k ~, I(k, n) = ~[k(kn)/k ~ -- n}. 

It is known [121 that such opera to r s  on the finite functions f(r) admit  the represen ta t ions  

S V~ (R, n) ] (F) dr' = S VeD (R, n) ] (r') dr' + A] (r), (1.5) 

f I (R, n) ] (r') dr' = S I (R, n) / (r') dr' + B/(r). 

Here  the vec to r  iX is fixed, the integrals  on the r ight  a r e  taken in the sense  of the Cauchy principal  value; the 
constants  A and B have the fo rm 
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where  r~ is the sur face  of the unit sphere  in the k - space  of the F o u r i e r  t r ans fo rm.  

In what follows, it  will  somet imes  become  n e c e s s a r y  to define the act ion of opera to rs  with the kerne ls  
V~ and I on constants .  For  this  purpose ,  we shal l  f i r s t  consider  a finite region V and se lec t  the boundary 
conditions in such a way that  within V the cu r r en t  vec to r  J is constant  and equal to J0. Without changing the 
no rma l  component  of the c u r r e n t  vec to r  on the boundary,  we introduce a number of c r acks  inside V. In a 
manner  analogous to (1.3), the field of the c u r r e n t  vec to r  J ( r )  i~ the body can be r ep resen ted  in the form of 
potent ials  whose densi ty is concentra ted  on the su r faces  of the c racks  ~i:  

j(r) = j,, § ~ .t I (r. r': n'i) bi (r') 6 [.Q,] dr', 

where  the kerne l  I has  the form (1.4), and ~( r ,  r , ,  n t) in the p resen t  case  sa t i s f ies  Eq. (1.2) and the bound- 
a r y  condition m~ V~ = 0 (m is the no rma l  to the boundary of the body). 

By v i r tue  of the law of conservat ion ,  the mean  in tegra l  value of the c u r r e n t  in the region V remains  
equal  to J0. T h e r e f o r e  

~ ~ [ ( r ,  r', , ; )b i  (r')6 [.o./l dr'~ =: O. (1.6) 

Here  the pointed b racke t s  r e p r e s e n t  averag ing  over  the volume V. We inc rease  the dimensions of the 
r eg ion  V to infinity and a s sume  that  in th is  p roces s  the field of c racks  becomes  the rea l iza t ion  of some r a n -  
dom field of  c r acks  of identical  or ienta t ion which is homogeneous in space.  In this passage to the l imit  the 
ke rne l  I ( r ,  r ' , n ' )  tends to the kerne l  I(R, a ' )  for  an infinite medium, and the mean  in tegra l  value for an 
e rgodic  f ield of c racks  can be  rep laced  by  the m ean  o f  the rea l iza t ions  over  the ensemble.  Then  Eq. (1.6) 
takes  the form 

y I(R. n)/N~bi(r')6[g~i]~ttr'=O. 

Since for  a homogeneous field of c r acks  the mean  under the in tegra l  sign is equal to a constant,  we have 
the equation 

I (It, n) dr' = O. (1.7) 

F r o m  (1.6), (1.3) it  follows that 

SV(1) (R, n) dr' = n. (1.8) 

It is e ssen t ia l  that the integrals  appear ing in these  re la t ions  formal ly  d iverge  a t  0 and at  infinity. T h e r e f o r e  
formulas  (1.7)j (1.8) define some regu la r iza t ion  of the d ivergent  in tegrals  on the left  which, in general ,  is not 
unique. Indeed, if  we fix not the ex te rna l  field of the c u r r e n t  J0 but  the voltage of the e lec t r i c  field E0, we 
a r r i v e  at  r ege la r i za t ions  of the fo rm 

S I ( R .  n) ar' ---- - -  S V r  = 0 

It should be  noted 'that t he re  is no unique definit ion of the act ion of ope ra to r s  with kerne ls  V~ and I on con-  
s tants ,  and the values  of the cor responding  in tegra ls  a r e  defined by the sense  they have in the specif ic  p rob -  

lem.  

2. Now suppose that  the se t  of plane el l ipt ic  cuts is the rea l iza t ion  of some random field of c racks  
which is homogeneous in space.  F r o m  this s e t  we dist inguish an a r b i t r a r y  c r ack  with sur face  ~i. If the po-  
tent ia l  densi t ies  b k ( r )  concent ra ted  on the su r faces  of al l  the c r ack s  a r e  known, then the cu r r en t  vec to r  field 
~(z ' )  in which the speci f ied  c r a c k  is s i tuated has  the fo rm 

Ji (r) = J0 ~- ~.  j" I (R, n~) bh (r') 6 [_O.k] dr', r ~ .o.i. (2.1) 

The  meaning of ~ ( r )  is an ex te rna l  f ield for  the c r ack s  ~i ,  in which i t  behaves  as  though it were  isolated. 
He rea f t e r  we shal l  cal l  J ' i(r) the effect ive ex te rna l  f ield of the c r ack  ai- 

If the solution of the prob lem for an  isolated c r a c k  in an a r b i t r a r y  ex te rna l  field is known, i .e . ,  if we 
lmow the expl ic i t  fo rm of the function bk ( r ,  "Jk ), then f rom (2.1) the re  follows a sys tem of  equations which is 
sa t isf ied by  the effect ive  f ields j i ( r )  for  each of the interact ing c racks  
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il (r) = Jo + hr ; I (Pt, n;) b k (r', jh) ~ [a~] dr', r ~ Q, (i = 1, 2 . . . .  ). 

To  cons t ruc t  the s ta t i s t i ca l  cha rac t e r i s t i c s  of the effect ive field, we introduce the following simplifying 
assumpt ions  concerning its s t ruc ture :  a) The fields Jk( r )  a r e  p rac t ica l ly  constant  for each of the c r acks  ~2k 
but,  in genera l ,  v a ry  f rom c r ack  to c rack;  b) the random field ]-k is s ta t i s t ica l ly  independent of the d imen-  
sions and or ienta t ion of the c r ack  ~k to which it re la tes .  

The p ic ture  of the in terac t ion  between the c r acks  for which these  hypotheses  a r e  rea l i zed  can be qual i -  
ta t ively  c ha r a c t e r i z ed  as  follows. For  a typical  c r ack  the effect ive field (the sum of the ex te rna l  field and the 
field of all  surrounding c racks )  is approximate ly  constant ,  and the contr ibution made to it by each individual 
c r ac k  is insignificant.  

Without en ter ing  for  the moment  into a d iscuss ion  of the reg ion  of applicabil i ty of these  hypotheses ,  let  
us tu rn  to an analys is  of the i r  fo rmal  consequences.  F r o m  the solution of the problems  for an isolated el l ip-  
t ica l  c r ack  in a homogeneous ex te rna l  field Jk, we find that the function b k ( r ,  ]k) has  the form 

bh = hh(r)(njk), (2.3) 

ca r t e s i an  coordinate  sys tem bound to the pr incipal  axes  of the crack ,  can be r ep re sen t ed  where  h k ( r ) ,  in a 
in the form 

2c ~/ 2 ~/, (2.4) It I,~ (x, y) -- ~E (~) a 2 c 2" 

Here  a, c a r e  the semiaxes  of the el l ipse;  E (w) is the complete  el l iptic in tegral  of the second kind; co = 1 - 
a 2 / c  2 (c _> a);  the medium is isotropic .  

We introduce the genera l ized  function 6 [ p ( r ) ] ,  concent ra ted  on al l  the sur faces  ~2i: 

6[p(r)] = ~ 6  [.Qd, 
i 

and the function 6r  [P i t '  )], concentra ted  on the su r faces  of al l  the c racks  except  for  the one passing through 
the point r ,  

6 r [p ( r ' ) ]=  ~ 6 [~d  for r E . % .  

(The equation p(l~) = 0 gives the en t i re  se t  of sur faces  ai.) Le t  H ( r )  and la(l~) be a r b i t r a r y  continuous 
sca la r  and vec tor  fields coinciding with h k ( r )  in (2.4) and n k on the su r faces  f~k. We consider  the field ] - ( r ) ,  
defined at  the points r E { p ( l : )  = 0} (hereaf te r  we shall  wr i te  r E  p) by the equation 

] (r) = J0 + ; I (R, n') H (r') [n'] (r')] 6 r [p (r')] dr' (r E p). (2.5) 

If hypothes is  a) is valid,  it follows f rom (2.2), (2.3) that  the field j - ( r )  coincides with the field Jk on 
the sur faces  of the c racks  ~2 k. This  field can be continued in an a r b i t r a r y  manner  to the en t i re  space.  

Star t ing with Eq. (1.5), we can cons t ruc t  the pr incipal  s ta t i s t ica l  cha rac t e r i s t i c s  of the effect ive field. 
We denote by ~n(r 1 , r 2 . . . . .  r n, the n-point  moment  of the vec to r  field: the mean  of the t ensor  product  of the 
field j ( r )  a t  the points r l ,  r 2 . . . . .  rn, provided that these  points belong to the sur faces  of the cracks .  In pa r -  
t i cu la r ,  the mathemat ica l  expectat ion and the two-point  moment  of the effect ive field have the fo rm 

= <j(r)]rEp>, ? = (j(r~)@-~r2)]r~, r2Ep). 

Averaging both sides of Eq. (2.5) for  the condition r ~ p and making use of hypothesis  b) that the field 
j ( r  ) at  the poin~ r is s ta t i s t ica l ly  independent of the dimensions and or ienta t ion of the c r ack  at  that point, we 
obtain for ~ the expres s ion  

J~ = J0 + ; ( I  (R, n') @ n 'H(r ' )  5 r[p (r ')]Ir E p> (3 (r ') lr ' ,  r E p )  dr', (2.6) 

where  the mean < j ( r ' )  r , ,  r E  p)  is calculated for the condition that the points r t and r a r e  s imultaneously 
s i tuated on cracks .  In defining the mean ( ' ] ( r ' )  I r , ,  r ~  p),  we can again s t a r t  with Eq. (2.5). Car ry ing  out the 
appropr ia te  averaging p roces s  and again making use of hypothesis  b), we will have 

<] (r) [ r, ra E p> = Jo + ~ (I  (R, n') @ n ' t t  (r')6~ [p (r')] ] r, r~ E p) (] (r')[ r', r, r~ E p> dr'. (2.7) 

Equations (2.6), (2.7) a r e  not closed,  since thei r  r ight  s ides contain mean values of the effect ive field which 
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have been  calculated for  o ther  conditions than the averages  on the left  s ides .  

The  chain of equations that  a r i s e s  in this way can be in te r rupted  by introducing additional assump-  
t ion concern ing  the s t ruc tu re  of the conditional means .  The  s imples t  method for obtaining an equation for "~l 
cons is t s  in taking 

\j(r )Iff, r ~ p )  ( j ( r ' ) ] r '~p)  = ~. 

Th is  is equivalent  to the usual  assumpt ion  of the se l f -cons i s ten t  f ield method that a l l  the pa r t i c les  
(cracks)  a r e  si tuated in an ident ical  constant  effect ive field [8]. 

1:- 

(2.8) 

F r o m  (2.6) and (2.8) ~ e  have 

J~ = Jo + ~ <I (R, n') Q H'H (r') 6 r [p (r')] [ r ~ p> dr'J ~, (2 .9 )  

Thus,  we have reduced  the prob lem to calculating the in tegra l  on the r ight  side of this equation. 

The  following approximat ion  for ~t can be obtained if  in Eq. (2.7) we se t  

~(r ') tr ' ,  r, r l~p> = (j(r ')lr ' ,  r ~ p ) .  

In the case  of a homogeneous field of c r acks  the mean  on the r ight  depends only on the di f ference r '  - 

( j ( r ) l r  , r~p> = O(r' -- r). 

The  function O(r' - 1:) (the mean  value of  the effect ive field a t  the point  1:' on condition that t he r e  is a 
c r a c k  at  the point 1:) c h a r a c t e r i z e s  the pa i rwise  in terac t ion  in the sys tem of interact ing cracks .  It is obvious 
tha t  as  [ 1:' - 1: [ -~ oo, this  function will  tend to the m e a n  value of the effect ive  field ~ .  The  equation for 0(1:) 
follows from (2.7) and has the form 

0 (r) = ]0 + ; <I(R, n') ~ n 'H(r ' )  6 r [p (r')][ r, r I ~ p> 0 ( r - -  r ' )dr '  �9 (2.10) 

It should  be  noted that  within the f r amework  of the p resen t  scheme,  the following approximat ions  do not yield 
fu r the r  co r r ec t ions  for  "~1. It can be shown that  the equation for  (J(1:) [ 1:, 1:1, 1:2 ~ P>, as  [ 1:2 [ ~ ~o, becomes  
(2.10). Analogously,  a l l  the equations for the m o r e  complicated conditional means  obtained by using ~ssump-  
t ions of the type (2.8) r educe  to (2.10) under the appropr ia te  passage_to the l imit .  To  cons t ruc t  the second 
moment  of the effect ive field,  7 ,  we mul tply  the values  of the field j(r) (Eq. (2.5)) a t  the dis t inct  points r l  
and 1:2 and average  the r e su l t  for  the condition 1:t, r2 ~ P: 

~(r1-r~)~Q<~(r2)~r1~r.2~p~-}- f ~I(R~n')[n~j(r')]H(r~)~r[~(r~)]Q~(r~)~r~r2~p~dr~. (2.11) 

The  equation for the function ~ ( R )  can  be  obtained by  "spli t t ing" the mean  value of (2.1), using hypothesis  
and assumpt ions  of the type (2.8): 

<~r~)[rl ,  r 2 ~ p >  = j~; <j ( r ' ) (~j ( r~)] r ' ,  r l ,  r 2 ~ P >  = < ~ r ' ) ~ r 2 ) l r ' ,  r ~ p >  = j (r - -  r~.). 

F r o m  this and (2.11) we obtain 

~o. (rl - -  r2) = J0 | ]1 + ~ <I (r~ - -  r') @ n ' H  (r') 6~ [p (r')] I rl,  r_~ ~ p> ]3 (r' - -  r~) dr'. (2 .12 )  

3. Now we tu rn  to the analys is  of a specif ic  s tochas t ic  model  of a f ield of c racks  in space - the Poisson  

m o d e l  

Suppose that  in the bounded volume V the re  a r e  N points such that  the posi t ion of each point is tmi- 
fo rmly  d is t r ibuted  in  V and is independent of the posi t ion of the other  points. The points a r e  the cen te r s  of 
e l l ipt ic  c r a c ks  of random dimensions  and or ienta t ions ,  and the cor responding  joint dis t r ibut ion functions a re  
a s sumed  to be given. We a r r i v e  a t  a Po i s son  field of c racks  ff we le t  V and N approach infinity in such a 
way that  l im (V/N) = V0 < ~ .  Obviously, in this p ro ce s s  there  is no co r r e l a t i on  between the posit ions of the 

c racks .  

To  de te rmine  the mean  value of the effect ive "Jr, we tu rn  to Eq. (2.9). In calculat ing the mean value un-  
der  the in tegra l  sign in (2.9), we f i r s t  c a r r y  out the averaging over  a l l  c racks  which have a fixed or ienta t ion 
n '  a t  the point 1:', and then over  a l l  poss ible  or ienta t ions:  

<I (R, n') @ n ' t t  .,'r') 6~ [p (r')] I r ~ p> :=- <I (R, n') ~?; n' H (r') 6 r [p (r')] I r ~ p) >.,. (3.1) 
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The  condit ional  m e a n  on the r igh t  can  be r e p r e s e n t e d  in the f o r m  

(H  (r') 6r [p (r')]l r ~ p > - -  <8 [p (r)] 8r [P (r')] It ( r ' ) )  (3.2) 
<6 [p (r)l> 

whe re  the m e a n  is ca lcu la ted  over  a l l  the c r a c k s  which have  or ien ta t ion  n '  a t  the point r ' .  For  homogeneous  
f ie lds  of c r a c k s  the m e a n  value (3.2) is  a function of the d i f fe rence  r - r ' .  I f  the points r and r) do not l ie  
in a s ingle plane which has  n, as  i ts  n o r m a l ,  then, s ince  the posi t ions of the c r a c k s  a r e  uncor re la t ed ,  we 
have  

�9 / ! ~ \ (8 [p(r)]8~[p(r')]H(r')} = (8 [p(r)]>\Sr[p(r )]H(r )/. 

Replac ing  the m e a n  over  the ensemble  by  the m e a n  over  the volume for a typica l  rea l iza t ion ,  we obtain 
N 

<Sr[p(r,)lH(r,)}: lim i ~ ~ ~.~h S v-*~o -V- 6r [p (r')] H (r') dr' := lim h~ (r') 5 [~d dr'. 
( V)  V , N ~  = 

Taking  account  of the e x p r e s s i o n  for  the function h i (r) (2.4), we will  have  

( 8 ~ [ p ( r ' ) I H ( r ' ) ) =  ~ 4 ~ / a'% "\ T '  ~' = ~ ~ \ ~ / '  (3.3)  

where  the m e a n  on the r igh t  s ide of the e x p r e s s i o n  for  k is calcula ted ove r  a l l  the c r a c k s  with fixed n o r m a l  

If  the points r and r ,  l ie in a s ingle  plane with n '  a s  i ts  n o r m a l ,  the r e su l t s  of the ave rag ing  will  be  
d i f ferent ,  s ince  6 r [ P ( r ' )  ] = 0, when r and r '  a r e  on the s a m e  c rack .  

T h e r e f o r e  the m e a n  (3.2) d i f fers  f r o m  a constant  only a t  the points of the plane ( r ' -  r , ) n '  = 0. It  can 
be  shown tha t  the value of the in tegra l  in (2.9) does not change if the m e a n  (3.2) is cons idered  constant  e v e r y -  
where .  

If in (2.9) we in terchange the o rde r  of ave rag ing  over  or ien ta t ions  and integrat ion,  we a r r i v e  a t  the 
equat ion 

-= J o -  ~ I  (R, n ' ) Q  n' ~--:-~t~ dr'z> L 

By v i r tue  of the r egu la r i za t i on  (1.7), the in tegra l  on the r ight  van i shes ,  and consequent ly  in the p r e s e n t  case  

-j~ = s  (3.4) 

Now let  us cons ider  Eq. (2.10). As in (3.1), we a v e r a g e  the in tegrand f i r s t  over  a l l  r ea l i za t ions  with 
fixed or ien ta t ion  of the c r a c k s  a t  the point r ' ,  and then  over  a l l  or ienta t ions  

(I(R, n') ~ n' (H (r') 8r [P (r')] I r, r ~ p > L  

The  condit ional  m e a n  in this e x p r e s s i o n  can be  r e p r e s e n t e d  as  

<H (r') 5,, [p (r')] I r. r~ ~ p> = <H (r') 8 r ]p (r')] 6 r [ p  lr,)] 6 [p (r)]) 
�9 <5 [p (r)] 6 r [p (rt)]> 

It  can  be  shown that  for a P o i s s on  field of c r a c k s ,  the des i r ed  mean ,  to within t e r m s  that  vanish  upon 
fu r the r  in tegrat ion,  takes  the f o r m  

i / <~ ' .  
F{H (r') 8 r [p (r')] I r, r, ~ p> :: ~ \ ,Z  (-o)! J (r -- r:iS[(r 1 --  r') n ' ]>  + ),, (3.5) 

where  the ave rag ing  on the r igh t  is c a r r i e d  out over  a l l  c r a c k s  with or ienta t ion  n ' ;  5[(r 1 - r ' ) n ' ]  i s  a del ta  
function concen t ra ted  in the plane (rl  - r ' ) n '  = 0. The  f i r s t  t e r m  on the r ight  side of (3.5) is  the contr ibut ion 
made  to the m e a n b y  the rea l i za t ions  for  which the points r and r ,  l ie on a single c rack .  The  function J (R)  
has  the s y m m e t r y  of an  e l l ipse  with s e m i a x e s  a and c, and the aff ine t r a n s f o r m a t i o n  C ca r ry ing  this  e l l ipse  
into a d isk  of unit r ad ius  c a r r i e s  J ( R )  into the sphe r i ca l ly  s y m m e t r i c  function J ' (~)  (~ = ! CR I): 

[ " +] 
j ,  (~) a ~" ~ " ~c~ for ~ ~ 2, 

iv, 
0 for ~ > 2 .  

(3.6) 
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The second t e r m  on the r ight  side in (3.5) is the contribution made to the mean by the real izat ions for 
which the points r '  and r I lie on different  cracks.  Substituting (3.5) into (2.10), we obtain the following ex-  
p ress ion  for 0(r) :  

O ( r ~ : j o - ~ - l f / ~  \ I ( r - - r ' , n ' ) @ n r  / ~----~-J(r~))~(r'nt))nO(r~\aE(o~) . . , - - r ' )d r ' -~ ,a  - l ~ < ~ I ( r - r ' ) @ n r > O ( r - - r ' ) d r  '. 
(3.7) 

As was noted above, the mathemat ica l  expectation of the effective field ~' coincides with the value of 
the function e(r)  a t  infinity. I n the  special  case of a uniform distr ibution over the orientations of  disk-shaped 
cracks ,  the function 0 (r)  is  spher ical ly  symmet r i c ,  and its value a t  infinity can be calculated, omitting the 
construct ion of the exact  solution of Eq. (3.7). In this  case ,  using (1.5), we obtain 

where  1 is the unit bivalent  tensor .  

We now proceed to construct  the cor re la t ion  function of the effective field J2(r 1 - r ~ ) .  We confine our -  
selves for the sake of simplici_ty to a field of c racks  of identical orientation. Then we will  be interes ted only 
in the project ion of the vector  J onto n, the common normal  to al l  the cracks.  We wri te  

<nj(rl)nj(r~)lri, r ~ p >  = r -- r..). 

Here  we a s sume  that the points r 1 and r z lie on dif ferent  cracks .  If the points r 1 and r2 always lie on the 
same crack,  then, by hypothesis a), concerning the constancy of the effective field within the l imits  of each 
crack,  and hypothesis  b) of Sec. 2, we will  have 

<nj(r,)nj(r2)lrl, r ~ p >  = <[nj(r) l"r~p>. 

F rom (2.12) and the re la t ions  (3.4), (3.5) we obtain an  equation for the function ~(r) :  

r (r) : (njo)' -~- ~t-l SnI  (r -- r', n) ( ~ g (r') ) 8 (r'n) dr' <[~ (r>]Z ] r ~ P> -~ [t-lL ~ nI (r -- r', n) ~P (r') dr '. (3.9) 

Averaging the express ion for [ ~ ( r )  ]2 on the condition that the point r l les on a crack, we obtain the following 
equation for a Poisson field of cracks:  

<In] (r)]21 r ~ p> : (njo) 2 -{- l~-I)~ ~ nl (r') ~p (r') dr'. (3.10) 

Solving Eq. (3.9) by the Four ie r  t r ans fo rm method, we will have 

~(k)---- (njo)2(2g)a6(k)~ - [i -- k[t-'nI(k) ]-'[t-~nI(k)F(k)< [n~r)]Zlr~p>, (3.11) 

where  F (k) is the Four ie r  t r ans fo rm of the function <(2a/u E(0J))I(R) 5 [Rn]>, defIned by Eqs. (3.5) and (3.6). 
Here  we have assumed that I(0) = 0, by vir tue of the regular izat ion (1.7). 

Fu r the rmore ,  using the Pa r seva l  formula,  we find f rom (3.10) that 

l [(k"ff-- i l l  -~[(k')~ ]~F (k) dk <[hi (r)]~ l r p>. <[n] ( r ) ] ' l r~P> = (nJ~ (-2u) 3)~ S[  -- L L kZ j] [ - 7 - - -  i 

Calculating the Integral  on the r ight  side of this equation, we canf indthe  express ionfor  <[nj'(r)]2r ! ~ p>: 

' < [nj(r)]~lr~p> = ~ f i  q- ~,(njo) ~'. (3.12) 

Thus,  the r ight  side of Eq. (3.11) is completely defined. 

4. The resu l t s  obtained in See. 3 enable us to pass to the determinat ion of the mathemat ica l  expectation 
and cor re la t ion  function of the random fields of the cur ren t  and voltage vectors  of an e lec t r ic  field in a 
medium with cracks.  

We average the equation (1.3) for the vec tors  J and E, making use of the effective-field assumption: 

<J> : Jo + (R, , , ')(, , '?) (e)  8 tp 

< E> = E o -~ ( ~  Vii ) (R, n')(n'] ')<H (r') 6[p (r')]> dr')n,. 

Here the outer averaging is ca r r i ed  out over a l l  the orientat ions,  and the mean under the integral  sign is cal -  
culated for a fixed value of the normal  n,. 

Since for a Poisson field of c racks  we have <H( r ' )5 [p ( r ' ) ]>  = k/~,  where k has the form (3.3), makIng 
use of the regular izat ions  (1.7), (1.8), we will have 
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<J> = J0, <E> = ~t-l[j0 § (?~nQn>~], (4.1) 

where  in the f i r s t  approximat ion  ~t = J0; the second approximat ion for "J~ has the fo rm (3.8). 

We introduce the t ensors  of effect ive e l ec t r i ca l  r e s i s t ance  ae  and effect ive e l ec t r i ca l  conductance ge 
by means  of the na tura l  re la t ions  

<E> = ~e<J>, t~e= o~ 1. 

F r o m  this and (4.1) it  follows that in the f i r s t  approximat ion 

~e = ~t[t + <~n| -1. (4.2) 

The second approximat ion of the method yields  

The  re la t ions  (4.2) and (4.3), for  the ease  o faun i fo rm distr ibution of disk-shaped c racks  ever  all  or ient~-  
tious, is shown in Fig. i (curve 1 cor responds  to (4.2), curve  2 to (4.3)). 

We shal l  now der ive  an express ion  for the co r re l a t ion  function of a random field of a currerr t  vec tor  in 
a medium with c r acks  of the same orientat ion.  We mult iply the value of the field J ( r )  (express ion  (1.2)} at 
the d is t inc t  points r t  and r 2 and ave rage  the r e su l t  over  the ensemble  of rea l iza t ions .  Making use of the e f -  
fec t ive- f ie ld  assumpt ions  we can obtain the following express ion  for the Four i e r  t r a n s f o r m  of the function 
II(R) = ( j ( r  1) | J(r~)): 

[k (kn) n] ~ [k(kn) n] [K (k) ~[ (k) = (2~t)a5 (k) Jo Q i, + ~ t2 L--~" - ~) [ k-'-~-- - <[hi-(r)] 21 r ~ p> Jr Z~u-2~ (k)]. 

Here  ~(k)  has  the form (3.11); ( [nJ(r)]  2 I r ~p> is defined by the r e l a t ion  (3.12). The function K(R) 
is a m e a n  value of the fo rm 

K (r~ -- r~) = (H(r:)5~, [p (r~)] H (r~) 6~ [p (r~)] ] rl, r e ~ p>, 

where  the averaging  is c a r r i e d  out on the assumpt ion  that  the points r |  and r~ lie on the same crack.  

The  m e a n  ene rgy  densi ty < W ) of the field has the fo rm 

t ~- l . I I  (k) dk <W> = ~-~. <j (r) | j (r)> = 

(the dot indicates complete  convolution of the tensors ) .  

After  calculat ing the in tegral  on the r ight  side of this re la t ion,  we obtain 

<w> = ~-~[j0 ~ + ;~ (nj0)~]. 

In an analogous manner ,  we can find an expres s ion  for the co r re l a t ion  function of the voltage vec tor  of 
an e l ec t r i c  field in a medium with c racks .  

In conclusion,  we shall  consider  the quest ion of es t imat ing the accu racy  of the approximat ion of the e f -  
fect ive field. It is known that  in problems on the in terac t ion  of point pa r t i c les ,  the m o re  slowly the potential  
of an individual par t ic le  is at tenuated at  infinity and the higher  is the par t ic le  densi ty,  the be t t e r  will  be the 
approximat ion  yielded by this method. However ,  r igorous  analytic  es t imates  cannot be obtained in the case  of 
s t rong in te rac t ion  because  of the c o m p l e x  s t r u c tu r e  of the exact  solution. Usually such es t imates  a r e  indi-  
cated on the bas is  of physical  considera t ions .  

With r e g a r d  to the express ions  obtained in this study for the f i r s t  and second s ta t i s t ica l  moments  of the 
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solution, it should be noted that for a low concentration of cracks, when there is no interaction (j(r)  = J0), 
hypotheses a) and b) of the method (Sec. 2) are satisfied exactly. Consequently the resulting expressions are 
exact solutions of the problem. As the concentration increases, hypotheses a) and b) will not, in general, be 
valid. Hypothesis a) will be violated when the effective field for a typical crack differs greatly from homo- 
geneous field, i.e., when there is a high concentration of cracks. On the other hand, hypothesis b) is more 
justified when a typical crack lies in a field of many neighboring cracks, i.e., when there is a high concentra- 
tion of cracks. This last  remark  also holds for the region of applicability of assumptions of the type (2.8). 

However, the violation of hypotheses a) and b), which relate to the behavior of each individual crack, 
may not affect the value of such crude statistical characterist ics as the f i rs t  and second moments of the solu- 
tion. Obviously, the effective-field method in the case of a Poisson field of cracks yields a good approxima- 
tion for the f i rs t  moments of the solution when the mean distance between the centers of the cracks is not 
less than their mean dimensions, which corresponds to X < 1.5 -2.  
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